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A fascinating aspect of Lisp-based programming languages is that code is data and data is code. This property,
called homoiconicity, is what makes Lisp macros so powerful. This sort of runtime operation performed on
arbitrary datatypes is called polytypism, or datatype genericity. In Haskell, several packages provide datatype
genericity, of which the following two are notable:

1. GHC Generics
2. generics-sop

While GHC Generics comes with base , writing generics code using generics-sop is generally simpler. This
article introduces generics-sop .

Motivation
Generic programming allows one to avoid writing boilerplate implementations for each similar datatype. The
implementation could be a (polytypic) function or a typeclass instance. For example, instead of having to
manually write FromJSON and ToJSON instances for each of your datatypes, you can use generics to derive
them automatically. Other examples of generic programming include pretty printers, parsers, equality functions
and route encoders.

Basics
Before diving further into this topic, we must understand the “SOP” in generics-sop.

Datatypes are SOPs under the hood

Haskell has two kinds of datatypes:

1. Algebraic data types, or ADTs
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2. Newtypes

Both ADTs and newtypes are a “sum-of-product” (SOP) under the hood. When writing generics-sop code,
we operate on these SOPs rather than directly on the datatype, because every datatype is “polymorphic”
in their SOP representation. The basic idea is that if you can write a function SOP -> a , then you get
SomeDataType -> a for free for any SomeDataType . This is called polytypism.

Consider the following ADT (from the these package):
-- `These` is like `Either`, but with a 3rd possibility of representing both values.
data These a b

= This a
| That b
| These a b

Here, These is a sum type, with This , That and These being its three sum constructors. Each sum
constructor itself is a product type - inasmuch as, say, the a and b in the third constructor together
represent a product type associated with that constructor. The type These is therefore a “sum of product”.

SOPs are tables

To gain better intuition, we may visualize the These SOP in a table form:

Constructor Arg 1 Arg 2 . . .
This a
That b
These a b

As every Haskell datatype is a SOP, they can be (visually) reduced to a table like the one above. Each row
represents the sum constructor; the individual cells to the right represent the arguments to the constructors
(product type). We can drop the constructor names entirely and simplify the table as:

a
b
a b

( These type visually represented as a table)

Every cell in this table is a unique type. To define this table in Haskell, we could use type-level lists; specifically,
a type-level list of lists. The outer list represents the sum constructor, while the inner list represents the products.
The kind of this table type would then be [[Type]] . Indeed, this is what generics-sop uses. We can define
the table type for These in Haskell as follows:
type TheseTable a b =

'[ '[ a ]
'[ b ]
'[ a, b ]

]

If this syntax seems confusing, see the following “Interlude” section.

Interlude: a foray into type-level programming

What is a “kind”? Kinds are to types what types are to terms. For example, the type of of the term
"Hello world" is String . The latter is a “type,” whereas the former is a “term”. Furthermore, we can go
one level up and ask what the kind of of the type String is. The answer is Type . We can clarify this
further by explicitly annotating the kinds of types when defining them (just as we annotate the types of terms
when defining them):
-- Here, we define a term (2nd line) and declare its type (1st line)
someBool :: Bool
someBool = True

2

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Polytypism
https://hackage.haskell.org/package/these-1.1.1.1/docs/Data-These.html
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Product_type
https://wiki.haskell.org/Kind
https://hackage.haskell.org/package/generics-sop-0.5.1.2/docs/Generics-SOP.html#t:Code


-- Here, we define a type (2nd line) and declare its kind (1st line)
type Bool :: Type
data Bool = False | True

Parametrized types, such as Maybe , belong to the kind of type-level functions:
type Maybe :: Type -> Type
data Maybe a = Nothing | Just a

Here, we say that “the type Maybe is of kind Type -> Type ”. In other words, Maybe is a type-level
function that takes a type of kind Type as an argument and returns another type of the same kind Type as
its result.

Finally, we are now in a position to understand the kind of TheseTable described in the prior section:
type TheseTable :: Type -> Type -> [[Type]]
type TheseTable a b =

'[ '[ a ]
'[ b ]
'[ a, b ]

]

[Type] is the kind of type-level lists, and [[Type]] is the kind of type-level lists of lists. The tick ( ' ) lifts
a term into a type. So, while True represents a term of type Bool , 'True , on the other hand, represents
a type of kind Bool - just as '[a] represents a type of the kind [Type] . See Datatype promotion in
GHC user guide for details.

See An introduction to typeclass metaprogramming, as well as Thinking with Types for more on type-level
programming.

Let’s play with SOPs
Enough theory; let’s get our hands dirty in GHCi. If you use Nix, you can clone this repo and run bin/repl
to get GHCi with everything configured ahead for you.
$ git clone https://github.com/srid/generics-sop-examples.git
$ cd ./generics-sop-examples
$ bin/repl
[1 of 1] Compiling Main ( src/Main.hs, interpreted )
Ok, one module loaded.
*Main>

The project already has generics-sop and sop-core added to the .cabal file, so you should be able to
import it:
> import Generics.SOP

We also have the these package added to the .cabal file, because it provides the above These type from the
Data.These module. To explore the SOP representation of the These type, let’s do some bootstrapping:
> import Data.These
> instance Generic (These a b) -- Derive generics-sop instance
> let breakfast = These "Egg" "Sausage" :: These String String

We derived Generic on the type and created a term value called breakfast (for which we are eating both
eggs and sausage). To get the SOP representation of this value, we can use from :
> unSOP . from $ breakfast
S (S (Z (I "Egg" :* I "Sausage" :* Nil)))

The key takeaway here is that the breakfast value corresponds to the third row in the SOP table for These ,
because breakfast is a value of the third constructor and it contains two values (the product of “Egg” and
“Sausage”).

String
String
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String String

The corresponding Haskell type for this table appears as follows:
type TheseTable :: [[Type]]
type TheseTable =

'[ '[ String ]
'[ String ]
'[ String, String ]

]

This type is automatically provided by generics-sop whenever we derive a Generic instance for the
type in question. We did precisely that further above by evaluating instance Generic (These a b) in
GHCi. Instead of manually defining TheseTable as above, deriving Generic does it for free, in the form
of Code a (viz. Code (These a b) ).
> :k Code (These String String)
Code (These String String) :: [[Type]]

In brief, remember this: Code a gives us the SOP table type for the datatype a . Now, how do we get the
SOP table value? That’s what from is for:
> :t (unSOP . from $ breakfast)
(unSOP . from $ breakfast)

:: NS
@[Type]
(NP @Type I)
((':)

@[Type]
((':) @Type [Char] ('[] @Type))
((':)

@[Type]
((':) @Type [Char] ('[] @Type))
((':)

@[Type]
((':) @Type [Char] ((':) @Type [Char] ('[] @Type)))
('[] @[Type]))))

Sadly, type-level lists are not displayed cleanly in GHCi. But we can reduce it (in our minds) to the following:
> :t (unSOP . from $ breakfast)
(unSOP . from $ breakfast)

:: NS (NP I) '[ [String], [String], [String, String] ]

Notice how this construction is more or less isomorphic to our TheseTable definition above. Next, I will
explain the NS and NP parts.

Interlude: NS & NP

You might wonder what the NS (NP I) part refers to in our table type above. NS is a n-ary sum and NP
an n-ary product. These are explained well in section 2 of Applying Type-Level and Generic Programming in
Haskell. However, for our purposes, you can treat NS as similar to the Nat type from the fin package, and
NP as similar to the Vec type from the vec package.

The difference is that unlike Vec (a homogenous list), NP is a heterogenous list whose element types are
specified by a type-level list.
> :k NP I '[String, Int]
NP I '[String, Int] :: Type

Like Vec, the size of an NP heterogenous list (size 2) is specified at the type-level. However, unlike Vec ,
we also say that the first element is of type String and the second (and the last) element is of type Int
(hence, a heterogenous list). To create a value of this heterogeneous list:
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> I "Meaning" :* I 42 :* Nil :: NP I '[String, Int]
I "Meaning" :* I 42 :* Nil

This syntax should be unsurprising because Nil and (:*) are constructors of the NP type:
> :info NP
data NP :: (k -> Type) -> [k] -> Type where

Nil :: NP f '[]
(:*) :: f x -> NP f xs -> NP f (x ': xs)

(View haddocks)

The I is the identity functor, but it could also be something else, like Maybe :
> Nothing :* Just 42 :* Nil :: NP Maybe '[String, Int]
Nothing :* Just 42 :* Nil

NS is the same, except now we are representing the same characteristics (heterogeneity) for the sum type
instead of a product type. A sum of length ‘n’ over some functor ‘f’:
> :info NS
data NS :: (k -> Type) -> [k] -> Type where

Z :: f x -> NS f (x ': xs)
S :: NS f xs -> NS f (x ': xs)

(View haddocks)

When the value is Z , it indicates the first sum constructor. When the value is S . Z , it indicates the
second constructor, and so on. Our breakfast value above uses These , which is the third constructor. So,
to construct the SOP representation of this value directly, we would use S . S . Z . This is exactly what we
saw above (repeated here):
-- Note the `S . S . Z`
> unSOP . from $ breakfast
S (S (Z (I "Egg" :* I "Sausage" :* Nil)))
>
> :t (unSOP . from $ breakfast)
(unSOP . from $ breakfast)

:: NS (NP I) '[ [String], [String], [String, String] ]

NS ’s functor is a NP I , so the sum choice’s inner value is an n-ary product (remember: we are working with
a sum-of-product), whose value is I "Egg" :* I "Sausage" :* Nil . Putting that product inside a sum, we
get S (S (Z (I "Egg" :* I "Sausage" :* Nil))) .

Code as data; data as code

The SOP representation of These can be manually constructed. First, we build the constructor arguments
(product), followed by the constructor itself (sum):
> let prod = I "Egg" :* I "Sausage" :* Nil :: NP I '[String, String]
> let sum = S $ S $ Z prod :: NP I '[[String], [String], [String, String]]
> :t sum
sum :: NS (NP I) '[[String], [String], [String, String]]

From this representation, we can easily produce a value of type These using to :
> to @(These String String) (SOP sum)
These "Egg" "Sausage"

Let’s pause for a moment and reflect on what we just did. By treating the type-definition of These (“code”)
as a generic SOP table (“data”)–i.e., code as data–we are able to generate a value (“code”) for that type
(“data”)–ie., data as code–but without using the constructors of that type. This is generic programming in
Haskell; you program generically without being privy to the actual type used.

This concludes our playing with SOPs. Now let’s do something useful.
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Example 1: generic equality
GHC’s stock deriving can be used to derive instances for builtin type classes, like Eq , on user-defined datatypes.
This works for builtin type classes, but generics-sop (as well as GHC.Generics) comes in handy when you want
to derive generically for arbitrary typeclasses. For a moment, let’s assume that GHC had no support for stock
deriving. How, then, would we derive our Eq instance?

We want a function geq that takes any datatype a (making the function polytypic) and performs an
equality check on its arguments. In effect, we want:
geq :: Generic a => a -> a -> Bool

This function can be broken down further to operate on SOP structures directly, so as to “forget” the specific a
:
geq :: forall a. Generic a => a -> a -> Bool
geq x y = geq' @a (unSOP $ from x) (unSOP $ from y)

geq' :: NS (NP I) (Code a) -> NS (NP I) (Code a) -> Bool
geq' = undefined

Our problem has now been reduced to operating on SOP tables, and our task is to implement geq' .

At this point, you are probably thinking we can simply case-match on the arguments. But remember that the
n-ary sum type NS is a GADT (i.e., its type index is dependent on the sum constructor). Instead, we have
to case-match at the type-level, as it were. This is what type-classes are for. When wanting a foo that
case-matches at type-level, the general pattern calls for writing a type-class Foo and then writing instances
for each case-match pattern.

Naive implementation

For pedagogic reasons, we begin with a naive implementation of geq' to illustrate the above explanation. We
need a sumEq function that checks the equality of the first constructor and then recurses for others. The
function will case-match on the outer list. Likewise, for each sum constructor, we will need a prodEq that
checks the equality of its products. It does so, similarly, by checking the equality of the first product and then
recursing for the rest; prodEq will case-match on the inner list.
geq' :: SumEq (Code a) => NS (NP I) (Code a) -> NS (NP I) (Code a) -> Bool
geq' = sumEq

-- `xss` is a type-level list of lists; `Code a`
class SumEq xss where

sumEq :: NS (NP I) xss -> NS (NP I) xss -> Bool

instance SumEq '[] where
sumEq = \case

instance (ProdEq xs, SumEq xss) => SumEq (xs ': xss) where
-- Both values are the same constructor; so check equality on their products,
-- using `prodEq`.
sumEq (Z x) (Z y) = prodEq x y
-- Recurse on next sum constructor.
sumEq (S x) (S y) = sumEq x y
-- Mismatching sum constructor; equality check failed.
sumEq _ _ = False

class ProdEq xs where
prodEq :: NP I xs -> NP I xs -> Bool

instance ProdEq '[] where
prodEq Nil Nil = True

instance (Eq x, ProdEq xs) => ProdEq (x ': xs) where
-- First product argument should be equal; then we recurse for rest of arguments.
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prodEq (x :* xs) (y :* ys) = x == y && prodEq xs ys

Notice how, in the first instance for SumEq , we are “pattern matching”, as it were, at the type-level and
defining the implementation for the scenario of zero sum constructors (not inhabitable). Then, inductively, we
define the next instance using recursion. When both arguments are at Z , we match their products, using
prodEq , which is defined similarly. Otherwise, we recurse into the successor constructor (the x in S x ).
The story for ProdEq is similar.

Finally, we can test that it works:
> geq (This True) (That False)
False
> geq (These 42 "Hello") (These 42 "Hello" :: These Int String)
True

Thus, we have implemented an equality function that works for any datatype (with Generic instance).

Combinator-based implementation

Hopefully, the above naive implementation illustrates how one can “transform” SOP structures straightforwardly
using typeclasses. N-ary sums and products need to be processed at type-level, so it is not uncommon to write
new type-classes to dispatch on their constructors, as shown above. Typically, however, you do not have to do
that because generics-sop provides combinators for common operations. Here, we will rewrite the above
implementation using these combinators.

The combinators are explained in depth in ATLGP. We will introduce a few in this article. The particular
combinators we need for geq are:

Combinator Description Typeclass it replaces
hcliftA2 Lift elements of a NP or NS using given function ProdEq
hcollapse Convert heterogenous structure into homogenous value ProdEq
ccompare_NS Compare two NS values SumEq

To appreciate the value of these particular combinators, notice the third column indicating the type-class it
intends to replace. Withtout further ado, here is the new (compact) implementation:
geq :: forall a. (Generic a, All2 Eq (Code a)) => a -> a -> Bool
geq x y = geq' @a (from x) (from y)

geq' :: All2 Eq (Code a) => SOP I (Code a) -> SOP I (Code a) -> Bool
geq' (SOP c1) (SOP c2) =

ccompare_NS (Proxy @(All Eq)) False eqProd False c1 c2
where

eqProd :: All Eq xs => NP I xs -> NP I xs -> Bool
eqProd p1 p2 =

and $
hcollapse $ hcliftA2 (Proxy :: Proxy Eq) eqTerm p1 p2

where
eqTerm :: forall a. Eq a => I a -> I a -> K Bool a
eqTerm a b =

K $ a == b

This code introduces two more aspects to generics-sop :

• Constraint propagation: When generically transforming SOP structures, we want to be able to
“propagate” inner constraints outwardly. Here, the Proxy class is used for this purpose. All c xs is
simply an alias for (c x1, c x2, ...) where xs is a type-level list. Likewise, All2 c xss is
c x11, c x12, ... where xss is type-level list of lists (ie., Code a ~ xss ). Clearly, we want
the Eq constraint in the table elements to apply to the whole table row and, thereon, to the table itself.
All2 Eq (Code a) on geq' specifies this.

• Constant functor: The constant functor K is defined as data K a b = K a . Always containing
the first type parameter, this functor “discards” the second type. Where you see K Bool a , we are
discarding the polymorphic a (the type of cell in the table), and returning the (constant) type Bool
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. When we transform the structure to be over K (using hcliftA2 ), we are essentially making the
structure homogenous in its elements, which in turn allows us to “collapse” it using hcollapse to
produce a single value (which we need to be the result of geq ).

This is just a brief taste of generics-sop combinators. Read ATLGP for details, and I shall introduce more
combinators in the examples below.

Interlude: Specialized combinators Most combinators are polymorphic over the containing structure; as
such, their type signatures can be pretty complex to understand. For this reason, you might want to begin
by using their monomorphized versions, which have simpler type signatures. For example, the polymorphic
combinator hcollapse has the following signature that makes it possible to work with any structure ( NS
or a NP , etc):
hcollapse :: SListIN h xs => h (K a) xs -> CollapseTo h a

If you are not very familiar with the library, this signature can be difficult to understand. But the monomorphized
versions, such as that for NS , are more straightforward:
collapse_NP :: NP (K a) xs -> [a]

These specialized versions are typically suffixed as above (i.e., _NP ).

Example 2: route encoding
In the first example above, I demonstrated how to use generics-sop to generically implement eq . Here, I
will provide a more interesting example: specifically, how to represent routes for a statically generated site
using algebraic data types. We will derive encoders ( route -> FilePath ) for them automatically using
generics-sop.

Imagine you are writing a static site in Haskell1 for your blog posts. Each “route” in that site corresponds to a
generated .html file. We will use ADTs to represent the routes:
data Route

= Route_Index -- index.html
| Route_Blog BlogRoute -- blog/*

data BlogRoute
= BlogRoute_Index -- blog/index.html
| BlogRoute_Post PostSlug -- blog/${slug}.html

newtype PostSlug = PostSlug {unPostSlug :: Text}

To compute the path to the .html file for each route, we need a function encodeRoute :: r -> FilePath
. It is worth creating a typeclass for it because we can recursively encode the ADT:
-- Class of routes that can be encoded to a filename.
class IsRoute r where

encodeRoute :: r -> FilePath

Manual implementation

Before writing generic implementation, it is always useful to write the implementation “by hand”. Doing so
enables us to begin building an intuition for what the generic version will look like.
-- This instance will remain manual.
instance IsRoute PostSlug where

encodeRoute (PostSlug slug) = T.unpack slug <> ".html"

-- These instances eventually will be generalized.
instance IsRoute BlogRoute where

encodeRoute = \case
BlogRoute_Index -> "index.html"
BlogRoute_Post slug -> "post" </> encodeRoute slug

1Using generators like Hakyll or Ema
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instance IsRoute Route where
encodeRoute = \case

Route_Index -> "index.html"
Route_Blog br -> "blog" </> encodeRoute br

We can do nothing about the PostSlug instance because it is not an ADT, but we do want to implement
encodeRoute for both BlogRoute and Route generically.

Identify the general pattern

Once you have written the implementation manually, the next step is to make it as general as possible. Try to
extract the “general pattern” behind these manual implementations. From looking at the specialized instances
above, we can determine a general pattern described as follows:

• To encode Foo_Bar in a datatype Foo , we drop the Foo_ and take the Bar . Then, we convert
it to bar.html .

• If a sum constructor has arguments, we check that it possesses exactly one argument (arity <=1). Then,
we call encodeRoute on that argument and append it to the constructor’s encoding using / .

– For example, to encode BlogPost_Post (PostSlug "hello") , we first encode the constructor
as "post" . Then, we encode the only argument as encodeRoute (PostSlug "hello") , which
reduces to "hello.html" , thus producing the encoding "post/hello.html" . Finally, when
encoding Route_Blog br , it gets inductively encoded into "blog/post/hello.html" .

Write the generic version

Having identified the general pattern, we are now able to write the generic version of encodeRoute . Keep in
mind the above pattern while you follow the code below:
gEncodeRoute :: Generic r => r -> FilePath
gEncodeRoute = undefined

To derive route encoding from the constructor name, we need the datatype metadata (provided by
HasDatatypeInfo ) from generics-sop. constructorInfo . datatypeInfo gives us the constructor
information, from which we will determine the final route encoding using the hindex combinator. Effectively,
this enables us to produce "foo.html" from a sum constructor like Route_Foo .
gEncodeRoute :: forall r.

(Generic r, All2 IsRoute (Code r), All IsRouteProd (Code r), HasDatatypeInfo r) =>
r -> FilePath

gEncodeRoute x = gEncodeRoute' @r (from x)

gEncodeRoute' :: forall r.
(All2 IsRoute (Code r), All IsRouteProd (Code r), HasDatatypeInfo r) =>
SOP I (Code r) -> FilePath

gEncodeRoute' (SOP x) =
-- Determine the contructor name and then strip its prefix.
let ctorSuffix = ctorStripPrefix @r ctorName
-- Encode the product argument, if any; otherwise, end the route string with ".html"
in case hcollapse $ hcmap (Proxy @IsRouteProd) encProd x of

Nothing -> ctorSuffix <> ".html"
Just p -> ctorSuffix </> p

where
encProd :: (IsRouteProd xs) => NP I xs -> K (Maybe FilePath) xs
encProd =

K . hcollapseMaybe . hcmap (Proxy @IsRoute) encTerm
encTerm :: IsRoute b => I b -> K FilePath b
encTerm =

K . encodeRoute . unI
ctorName :: ConstructorName
ctorName =

hcollapse $
hzipWith

(\c _ -> K (constructorName c))
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(datatypeCtors @r)

datatypeCtors :: forall a. HasDatatypeInfo a => NP ConstructorInfo (Code a)
datatypeCtors = constructorInfo $ datatypeInfo (Proxy @a)

ctorStripPrefix :: forall a. HasDatatypeInfo a => ConstructorName -> String
ctorStripPrefix ctorName =

let name = datatypeName $ datatypeInfo (Proxy @a)
in maybe (error "ctor: bad naming") (T.unpack . T.toLower) $

T.stripPrefix (T.pack $ name <> "_") (T.pack ctorName)

hcollapse should be familiar, and hcmap is just an alias of hcliftA (analogous to hcliftA2 used in
the above example). New here is hcollapseMaybe , which is a custom version of hcollapse . We defined it
to constrain the number of products to either zero or one (as it would not make sense for a route tye otherwise).
Its full implementation2 is available in the source.

Finally, we make use of DefaultSignatures to provide a default implementation in the IsRoute class:
class IsRoute r where

encodeRoute :: r -> FilePath
default encodeRoute ::

(Generic r, All2 IsRoute (Code r), HasDatatypeInfo r) =>
r ->
FilePath

encodeRoute = gEncodeRoute

This implementation, in turn, allows us to derive IsRoute arbitrarily via DeriveAnyClass –which is to say
that we get our IsRoute instances for “free”:
data Route

= Route_Foo
| Route_Blog BlogRoute
deriving stock (GHC.Generic, Eq, Show)
deriving anyclass (Generic, HasDatatypeInfo, IsRoute)`

encodeRoute Route_Foo now returns "foo.html" , and encodeRoute $ Route_Blog BlogRoute_Index
returns "blog/index.html" –all without needing boilerplate implementation.

Example 3: route decoding
As a final example, I shall demonstrate what it takes to construct new values. Naturally, our IsRoute class
above needs a new method: decodeRoute for the reverse conversion. (A function like decodeRoute is useful
for checking the validity of links in the generated HTML):

2In particular, we create a HCollapseMaybe constraint that limits hcollapse to work on, at most, one product:
class HCollapseMaybe h xs where

hcollapseMaybe :: SListIN h xs => h (K a) xs -> Maybe a

instance HCollapseMaybe NP '[] where
hcollapseMaybe _ = Nothing

instance HCollapseMaybe NP '[p] where
hcollapseMaybe (K x :* Nil) = Just x

instance (ps ~ TypeError ('Text "Expected at most 1 product")) => HCollapseMaybe NP (p ': p1 ': ps) where
hcollapseMaybe _ = Nothing -- Unreachable

class (All IsRoute xs, HCollapseMaybe NP xs) => IsRouteProd xs

instance (All IsRoute xs, HCollapseMaybe NP xs) => IsRouteProd xs

Then we change encProd to be
encProd :: (IsRouteProd xs) => NP I xs -> K (Maybe FilePath) xs
encProd =

K . hcollapseMaybe . hcmap (Proxy @IsRoute) encTerm

while propagating the All IsRouteProd (Code r) constraint all the way up.
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class IsRoute r where
-- | Encode a route to file path on disk.
encodeRoute :: r -> FilePath
-- | Decode a route from its encoded filepath
decodeRoute :: FilePath -> Maybe r

gDecodeRoute :: forall r.
(Generic r, All2 IsRoute (Code r), HasDatatypeInfo r) =>
FilePath -> Maybe r

gDecodeRoute fp = undefined

SList

Generically constructing values is a little more involved. Here, it is useful to know about singleton for type-level
lists: SList .
data SList :: [k] -> Type where

SNil :: SList '[]
SCons :: SListI xs => SList (x ': xs)

-- | Get hold of an explicit singleton (that one can then
-- pattern match on) for a type-level list
--
sList :: SListI xs => SList xs
sList = ...

To generically implement decodeRoute we need sList . sList pretty much allows us to “case-match”
on the type-level list and build our combinators accordingly, as we will see below.

Anamorphism combinators

To implement decodeRoute generically, we are looking to construct a NS (NP I) (Code r) depending on
which constructor the first path segment of fp matches. Then, we recurse into constructing the inner route for
the sum constructor’s (only and optional) product type. This recursive building of values is called anamorphism.
In particular, we need two anamorphisms: one for the outer sum and another for the inner product.

generics-sop already provides cana_NS and cana_NP as anamorphisms for NS and NP , respectively.
However, we need a slightly different version of them to return Maybe values instead. We shall define these
anamorphisms (prefixed with m ) accordingly as follows (note the use of sList ):
-- | Like `cana_NS` but returns a Maybe
mcana_NS ::

forall c proxy s f xs.
(All c xs) =>
proxy c ->
(forall y ys. c y => s (y ': ys) -> Either (Maybe (f y)) (s ys)) ->
s xs ->
Maybe (NS f xs)

mcana_NS _ decide = go sList
where

go :: forall ys. (All c ys) => SList ys -> s ys -> Maybe (NS f ys)
go SNil _ = Nothing
go SCons s = case decide s of

Left x -> Z <$> x
Right s' -> S <$> go sList s'

-- | Like `cana_NP` but returns a Maybe
mcana_NP ::

forall c proxy s f xs.
(All c xs) =>
proxy c ->
(forall y ys. (c y, SListI ys) => s (y ': ys) -> Maybe (f y, s ys)) ->
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s xs ->
Maybe (NP f xs)

mcana_NP _ uncons = go sList
where

go :: forall ys. (All c ys) => SList ys -> s ys -> Maybe (NP f ys)
go SNil _ = pure Nil
go SCons s = do

(x, s') <- uncons s
xs <- go sList s'
pure $ x :* xs

Implement gDecodeRoute

Now we are ready to use a combination of sList , mcana_NS and mcana_NP to implement gDecodeRoute
:
gDecodeRoute :: forall r.

(Generic r, All IsRouteProd (Code r), All2 IsRoute (Code r), HasDatatypeInfo r) =>
FilePath -> Maybe r

gDecodeRoute fp = do
-- We operate on first element of the filepath and inductively decode the rest.
basePath : restPath <- pure $ splitDirectories fp
-- Build the sum using an anamorphism
to . SOP

<$> mcana_NS @IsRouteProd @_ @_ @(NP I)
Proxy
(anamorphismSum basePath restPath)
(datatypeCtors @r)

where
-- The `base` part of the path should correspond to the constructor name.
anamorphismSum :: forall xs xss.
IsRouteProd xs =>
FilePath ->
[FilePath] ->
NP ConstructorInfo (xs ': xss) ->
Either (Maybe (NP I xs)) (NP ConstructorInfo xss)

anamorphismSum base rest (p :* ps) =
fromMaybe (Right ps) $ do

let ctorSuffix = ctorStripPrefix @r (constructorName p)
Left <$> case sList @xs of

SNil -> do
-- For constructors without arguments, we simply expect the `rest`
-- of the path to be empty.
guard $ ctorSuffix <> ".html" == base && null rest
pure $ Just Nil

SCons -> do
-- For constructors with an argument, we ensure that the constructor
-- name matches the base part and then recurse into decoding the
-- argument itself.
guard $ ctorSuffix == base
pure $

mcana_NP @_ @_ @_ @I
(Proxy @IsRoute)
anamorphismProduct
Proxy

where
anamorphismProduct :: forall y1 ys1.
(IsRoute y1, SListI ys1) =>
Proxy (y1 ': ys1) -> Maybe (I y1, Proxy ys1)

anamorphismProduct Proxy = case sList @ys1 of
-- We "case match" on the rest of the products to handle the scenario
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-- of there being exactly one product.
SNil -> do

-- Recurse into the only product argument
guard $ not $ null rest
r' <- decodeRoute @y1 $ joinPath rest
pure (I r', Proxy)

SCons ->
-- Not reachable, due to HCollapseMaybe constraint
Nothing

We split the path fp and process the first path segment by matching it with one of the sum constructors.
In anamorphismSum , we handle the two cases of null product constructor and singleton product constructor (
mcana_NS is responsible for recursing into other sum constructors). For null product, we match the file path
with “${constructorSuffix}.html” and return immediately. For a single product case, we use mcana_NP to
build the product. anammorphismProduct uses sList to case match on the rest of the products (i.e. 2nd,
etc.) and calls decodeRoute on the first product only if the rest is empty–which, in turn, requires us to use
the IsRoute constraint all the way above.

Finally, we use DefaultSignatures to specify a default implementation in IsRoute class.

Putting it all together

We can test that our code works in GHCi:
> import RouteEncoding
> encodeRoute Route_Index
"index.html"
> decodeRoute @Route $ encodeRoute Route_Index
Just Route_Index

To be completely sure, we can test it with inductive route values:
> encodeRoute $ Route_Blog $ BlogRoute_Post "hello"
"blog/post/hello.html"
> decodeRoute @Route "blog/post/hello.html"
Just (Route_Blog (BlogRoute_Post "hello"))
>

This concludes the introduction to generics-sop .

Further information
• Source code for this article.
• This ZuriHac talk provides a good introduction to generics-sop.
• Applying Type-Level and Generic Programming in Haskell by Andres Löh acts as a lengthy tutorial cum

documentation for generics-sop.
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